Live time

A. Contin

June 2012

Check the livetime estimate in root file (pLevel1(0)->LiveTime), using the time difference between events (pLevel1(0)-> TrigTime[4]).

Event sample: all B572/pass2 runs.

Principle of the measurement

Cumulate the time difference between each event and the previous one in bins of geographic theta and phi (2×2 degrees).

Fit the resulting plots with a negative exponential.
The real trigger rate is the inverse of the exponential coefficent.

Results - collected events

Events

The statistics is very large in all bins.

Results - root file livetime distribution

Live time original

The blue line indicate the phi interval for the plots in the following slides.

Results - sample fits

The fit is performed between $500 \mu \mathrm{~s}$ and the first bin with less than 10 entries.

Results - sample fits, enlarged plots

The lower cut at $200 \mu \mathrm{~s}$ (artificial dead time) is clearly visible in all bins.

Results - rate distribution
Rate

From rate to livetime

The artificial dead time, $200 \mu \mathrm{~s}$, corresponds to a maximum possible rate of 5000 Hz .

The livetime derived from rate is therefore:

$$
\text { livetime }=1-\frac{\operatorname{rate}(\mathrm{Hz})}{5000}
$$

Results - livetime from rate

Livetime from rate

Results - root file livetime distribution

Live time original

Results - root file livetime vs. livetime from rate
Livetime from rate (1-rate/5000) vs. Livetime

Results - root file livetime vs. livetime from rate (θ slices $)^{\left(\mathbb{N}^{N N}\right.}$

No differences seen between the two theta slices.
Near to the magnetic poles, the livetime from root file seems to be overestimated by about 10\%.

Conclusion

I need help to understand these results.

