

Live time

A. Contin

June 2012

Check the livetime estimate in root file (pLevel1(0)->LiveTime), using the time difference between events (pLevel1(0)->TrigTime[4]).

Event sample: all B572/pass2 runs.

Cumulate the time difference between each event and the previous one in bins of geographic theta and phi (2x2 degrees).

Fit the resulting plots with a negative exponential.

The real trigger rate is the inverse of the exponential coefficent.

Results – collected events

Events

The statistics is very large in all bins.

Results – root file livetime distribution

Live time original

The blue line indicate the phi interval for the plots in the following slides.

Results – sample fits

Results – sample fits, enlarged plots

INFN

Results – rate distribution

The artificial dead time, 200 μ s, corresponds to a maximum possible rate of 5000 Hz.

The livetime derived from rate is therefore:

livetime = $1 - \frac{\text{rate(Hz)}}{5000}$

Results – livetime from rate

Livetime from rate

Results - root file livetime distribution

Live time original

Results – root file livetime vs. livetime from rate

INFN

No differences seen between the two theta slices.

Near to the magnetic poles, the livetime from root file seems to be overestimated by about 10%.

Conclusion

I need help to understand these results.