

September 2010

Bindi V., Castellini G., Contin A., Giovacchini F., Guandalini C., Laurenti G., Levi G., Lolli M., Masi N., Quadrani L., Palmonari F., Sbarra C.

The Time Of Flight of the AMS-02 Nicolò Masi

Bologna University and INFN

Main tasks

Anti-Matter

An Improved Version of AMS-01

	Value	AMS-01	AMS-02
{ {	Mission lenght	10 days	10 years
	MDR	150 GV	1 TV
	He Statistics	2.86 x 10 ⁶	> 10 ⁹
	$E_{max} (e^{-})$	~ 30 GeV	1.4 TeV
	$E_{max}\left(e^{+}\right)$	~ 3 GeV	350 GeV
	$E_{max}(\bar{p})$	\sim 3 GeV	450 GeV

 $\frac{\overline{He}}{He} < 1.1 \times 10^{-6}$

The TOF system provides: - the fast trigger to the whole AMS;

- the measurement of the time of flight (Δt – better than 180 ps), for the determination of the particle velocity (β), with a resolution of few %;

- the distinction from upward and downward going particles at a level of 10⁻⁹ necessary to distinguish between matter and antimatter;

- the measurement of the absolute particle charge up to Z =15.

Strangelets

Expected number of detected cosmic ray particles above a given energy threshold in three years of data

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$> 1{\rm GeV/c}$	$> 10 {\rm GeV/c}$	$> 10^2 {\rm GeV/c}$	$> 1 {\rm TeV/c}$
e 1.4×10^8 6.8×10^6 7.2×10^4 4.4×10^2 e ⁺ 9×10^6 3×10^5 1.6×10^3 6 \bar{p} 1.4×10^8 6.8×10^6 7.2×10^4 4.4×10^2 He 6.4×10^8 2.1×10^8 7.3×10^6 1.7×10^5	р		6.1×10^{9}	1.5×10^8	2.5×10^6
e^+ 9×10^6 3×10^5 1.6×10^3 6 \bar{p} 1.4×10^8 6.8×10^6 7.2×10^4 4.4×10^2 He 6.4×10^8 2.1×10^8 7.3×10^6 1.7×10^5	e	1.4×10^8	6.8×10^6	7.2×10^4	4.4×10^2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e^+	9×10^6	3×10^5	1.6×10^3	6
He 6.4×10^8 2.1×10^8 7.3×10^6 1.7×10^5	$\bar{\mathrm{p}}$	1.4×10^8	$6.8 imes 10^6$	7.2×10^4	4.4×10^2
	He	6.4×10^8	2.1×10^8	7.3×10^6	1.7×10^5

The AMS-02 TOF

MAIN CHARACTERISTICS OF TOF SYSTEM

- ✓ High redundancy of electronic components for unmanned operation of 10 years in the space station;
- Capability to operate in the space environment (in vacuum, large temperature variations) on the ISS.
- ✓ Large sensitive area: 6.4 m²
- Low weight (264 kg) and low power consumption (150 W)

AMS-02/TOF Chronology

- TOF: INFN Laboratories (Bologna) 2001 2006
- TOF: Thermal vacuum and vibration test in Terni 2006 2007
- CERN: Test beam 2008 2010
- ESA (Estec): CR Muons February 2010
- CERN: Permanent Magnet, new test beam and calibration May 2010
- NASA (Cape Kennedy) Final Step CR Muons (unreleased) August 2010

TOF VIBRATION TEST

The VTs consist in dynamic mechanical tests on vibrating tables (x-y-z directions) simulating the Shuttle during take-off.

TOF performances were not degraded by the Maximum Expected Flight Level (MEFL) vibration environment

Lower TOF pre-integration (CERN, Geneva, Switzerland)

Test Beam Results: **TOF response to 400 GeV protons** CERN test beam- February 2010

INFN

Test Beam Results: **TOF response to 400 GeV protons** CERN test beam- February 2010

TOF response to 400 GeV protons

Time Resolution: 160 ps/pad

Maxwell EMI chamber

AMS-02 in the ESTEC Large Space Simulator

Muons Detections

TOF PERFORMANCES

AMS-02 in the CERN North Area

AMS at Cape Kennedy

2011 Launches

Date: Feb. 26 Mission: STS-134

Launch Vehicle: Space Shuttle Endeavour

Launch Site: Kennedy Space Center - Launch Pad 39°

Launch Time: 4:04 p.m. EST

STS-134 Description: Space shuttle Endeavour will deliver an EXPRESS Logistics Carrier-3 (ELC-3) and the Alpha Magnetic Spectrometer (AMS-02) to the ISS

> ESA Astronaut: Roberto Vittori

Lucio Quadrani 🥃 Veronica Bindi

100

pOCC

AMS going through final tests at KSC – 28 Aug 2010