

September 2011

Bindi V., Contin A., Masi N., Laurenti G., Quadrani L., Palmonari F.

AMS-02 and the TOF detector: performance and physical perspectives Nicolò Masi Bologna University and INFN

Matter Anti-Matter	Aain task	S	
	An Im	proved Version AMS-01	of
Case Tracker O To A	Value	AMS-01	AMS-02
	Mission lenght	10 days	10 years
RICH TOF	MDR	150 GV	2.14 TV
Antimatter	He Statistics	2.86 x 10 ⁶	> 10 ⁹
	$E_{max}\left(e^{-}\right)$	~ 30 GeV	1.4 TeV
Astrophysics, 💄	$\overline{E_{max}\left(e^{+} ight)}$	~ 3 GeV	350 GeV
Dark Matter	$E_{max}\left(\bar{p} ight)$	~ 3 GeV	450 GeV
The TOF system provides:	Strangelets		

 the fast trigger to the whole AMS and the selector of the events through the LT, HT and SH;

- the measurement of the time of flight (Δt – better than 180 ps), for the determination of the particle velocity (β), with a resolution of few %;

- the measurement of the absolute particle charge up to Z =15;

-the distinction from upward and downward going particles at a level of 10⁻⁹ necessary to distinguish between matter and antimatter;.

The AMS-02 TOF

TOF consists of 4 plastic scintillator planes, 2 above and 2 below the magnet. The counters of adjacent planes are orthogonal. The number of counters per plane has been reduced to 8, 8, 10, 8 counters to reduce the

weight (34 scintillators).

Each TOF counter is composed by:
a plastic scintillator 1 cm thick and around

- 120 cm long (Eljen-Technology type: Ej-200), • read at both ends by 2 independently powered photomultiplier tubes (fine-mesh Hamamatsu R5946 with max spectral response at 420 nm),
- connected with transparent light guides.

The AMS-02 TOF

The AMS-02 TOF

Go baby go!

Tur

And physics begins

AMS-02 and the Antiworld Island of Antimatter?

The CPT theorem assures that any particle species there exists the antiparticle with exactly the same mass and decay width and eventually opposite charges.

This striking symmetry would naturally lead us to conclude that the Universe contains particles and antiparticles in equal number densities.

The observed Universe is drastically different.

- > 100 MeV γ flux excludes wide antimatter regions up 100 Mpc
- > Sakharov's 3 Principles of Baryogenesis

... but alternative models predict distant antimatter local domains

A single anti-He CR nucleus represents a strong evidence for Antimatter Domains in our Universe

Expected number of detected cosmic ray particles above a given energy threshold in three years of data

with 1% accuracy continuously over the solar cycle.

The isotopic composition of the CR is correlated with their propagation mechanisms

CR Propagation Constraint

New Physics: Strangelets

There are six types of Quarks found in accelerators (*u*, *d*, *s*, *c*, *b*, *t*). All matter on Earth is made out of only two types (*u*, *d*) of quarks. "Strangelets" are new types of matter composed of three types of quarks (*u*, *d*, *s*) which should exist in the cosmos.

> <u>Carbon Nucleus</u> Z/A ~ 0.5

Strangelet Z/A ~ 0.1

Dark Matter Program (TOF Group)

Indirect detection via annihilation/decay chain products: antiproton, positron, gamma, antideuteron

PAMELA results on the Cosmic-Ray Antiproton Flux

No Dark Matter Signal!

Are we seeing dark matter?

Primary CR Positron from Dark Matter

Antideuteron Flux and Uncertainties comparison

Propagation Model and dark Matter Halo

INFN

Antiproton & Antideuteron HE Search with AMS-02 :

Dark Matter Parameters Space for a nonleptophilic candidate:

 $M_{DM} \ge 2 T e V$

 $\langle \sigma v \rangle \sim 10^{-(26 \div 22)} cm^3 s^{-1}$

High Energy \bar{p} , \bar{d} Fluxes of $10^{-(5\div 6)}$ [GeV $m^2 s sr$]⁻¹

for Kinetic Energy of $70 \div 500 \text{ GeV}/n$

A lot of new stuff! Stay tuned....